Solvability of the Generalized Possio Equation in 2d Subsonic Aeroelasticity

نویسنده

  • PETER L. POLYAKOV
چکیده

We study solvability of the generalized Possio integral equation a tool in analysis of a boundary value problem in 2D subsonic aeroelasticity with the Kutta-Joukowski condition ”zero pressure discontinuity” ψ(x, 0, t) = 0 on the complement of a finite interval in the whole real line R. The corresponding problem with boundary condition on finite intervals adjacent to the ”chord” was considered in [P].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Boundary Value Problem to Possio Integral Equation in Theoretical Aeroelasticity

The present paper is the first in a series of works devoted to the solvability of the Possio singular integral equation. This equation relates the pressure distribution over a typical section of a slender wing in subsonic compressible air flow to the normal velocity of the points of a wing downwash . In spite of the importance of the Possio equation, the question of the existence of its solutio...

متن کامل

On a Boundary Value Problem in Subsonic Aeroelasticity and the Cofinite Hilbert Transform

We study a boundary value problem in subsonic aeroelasticity and introduce the cofinite Hilbert transform as a tool in solving an auxiliary linear integral equation on the complement of a finite interval on the real line R.

متن کامل

A note on unique solvability of the absolute value equation

It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

Toward a Mathematical Theory of Aeroelasticity

This paper initiates a mathematical theory of aeroelasticity centered on the canonical problem of the flutter boundary an instability endemic to aircraft that limits attainable speed in the subsonic regime. We develop a continuum mathematical model that exhibits the known flutter phenomena and yet is amenable to analysis non-numeric theory. Thus we model the wing as a cantilever beam and limit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005